Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 199: 115954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176160

RESUMO

Even though Pacific - Indian Ocean exchange [Indonesian Throughflow (ITF)] has been measured for the last three decades, the measurements of microplastic in the region is very limited. This study was the initial investigation of the vertical distribution of microplastic in the deep-sea areas across the ITF Pathway. Niskin water samples were utilized to obtain the samples from a water column in a range of 5 to 2450 m. A total of 924 microplastic particles with an average abundance of 1.062 ± 0.646. n/L were found in the water column. Our findings indicate that water temperature and water density are the most significant factors correlated to the microplastic concentration. This study will be the first report discussing the distribution of microplastics in the deep-sea water column that could be highly significant in determining the fate and transport of microplastic within Indonesian waters that exits into the Indian Ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Indonésia , Poluentes Químicos da Água/análise , Água , Monitoramento Ambiental
2.
Nanotechnology ; 32(23)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33621964

RESUMO

Polymeric carbon nitride (C3N4) is currently the most potential nonmetallic photocatalyst, but it suffers from low catalytic activity due to rapid electron-hole recombination behavior and low specific surface area. The morphology control of C3N4is one of the effective methods used to achieve higher photocatalytic performance. Here, bulk, lamellar and coralloid C3N4were synthesized using different chemical methods. The as-prepared coralloid C3N4has a higher specific surface area (123.7 m2 · g-1) than bulk (5.4 m2 · g-1) and lamellar C3N4(2.8 m2 · g-1), thus exhibiting a 3.15- and 2.59-fold higher photocatalytic efficiency for the selective oxidation of benzyl alcohol than bulk and lamellar C3N4, respectively. Optical characterizations of the photocatalysts suggest that coralloid C3N4can effectively capture electrons and accelerate carrier separation, which is caused by the presence of more nitrogen vacancies. Furthermore, it is demonstrated that superoxide radicals (·O2-) and holes (h+) play major roles in the photocatalytic selective oxidation of benzyl alcohol using C3N4as a photocatalyst.

3.
RSC Adv ; 11(6): 3484-3494, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424270

RESUMO

This work aims to study the product characteristics of cellulose degradation not only by a hydrothermal process but also in combination with a sonication process. Herein, 4.3 mL of oxalic acid (H2C2O4)-sodium chloride (NaCl) solution containing cellulose was placed into a stainless steel reactor (or the mixture was placed into the reactor after the sonication process for 1 hour); then, carbon dioxide (CO2) was released for pressurization. Degradation was performed under certain pressures (70 and 200 bar) and temperatures (125 °C and 200 °C) at various times. Scanning Electron Microscopy (SEM) results indicated that the sonication pretreatment process affected the solid cellulose, making it rougher or fibrous than the non-sonicated process. XRD characterization results indicated that both process types caused changes in the crystallinity and composition of cellulose I and II with pressure, temperature, and time. The combination of sonication and hydrothermal processes resulted in lower crystallinity. Changes in crystallinity showed different characteristics in swelling, reduced the interaction between chains, and even broke the polymer chains inside the particles. In a hydrothermal process at 200 bar and 200 °C, a maximum reducing sugar concentration of 5.1 g L-1 was obtained, while 3.2 g L-1 was obtained in the combined sonication and hydrothermal process under the same operating condition, which is below the value attained at 200 °C and 70 bar. These results indicated the existing competition between the formation and further degradation of the reducing sugar, a phenomenon explained by the presence of a monomer (reducing sugar), an oligomer (cellotriose), and 5-HMF (5-hydroxymethyl-2-furaldehyde) in a liquid product processed under hydrothermal conditions.

4.
J Immunol Res ; 2017: 9125048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28758135

RESUMO

BACKGROUND: We investigate the immunogenic properties of chitosan and liposome nanoparticles as adjuvant codelivery against a commercial pneumococcal conjugate vaccine (PCV) in an animal model. METHODS: The chitosan and liposome nanoparticles were prepared by ionic gelation and dry methods, respectively. The PCV immunization was performed intradermally in the presence of adjuvants and booster injections which were given without an adjuvant. The Quil-A® was used as a control adjuvant. The ELISA was performed to measure the antibodies against pneumococcal type 14 polysaccharide (Pn14PS). RESULTS: The level of total antibodies against Pn14PS antigen was no different between the mouse groups with or without adjuvant codelivery. Codelivery of the PCV with chitosan nanoparticles as well as the Quil-A adjuvant elicited IgG1, IgG2a, IgG2b, and IgG3 antibodies. Meanwhile, codelivery of liposome nanoparticles elicited mainly IgG1 antibodies against the Pn14PS. CONCLUSIONS: The chitosan and liposome nanoparticles as adjuvant codelivery were successfully synthesized. These nanoparticles have different shapes in particle formation, liposome nanoparticle with their unilamellar shape and chitosan nanoparticles in large shape due to the aggregation of small-size particles. Codelivery of chitosan nanoparticles has more effect on the IgG subclass antibody production than that of liposome nanoparticles in a mouse model.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Cápsulas Bacterianas/imunologia , Quitosana/imunologia , Imunoglobulina G/sangue , Lipossomos/imunologia , Nanopartículas , Animais , Anticorpos Antibacterianos/imunologia , Quitosana/administração & dosagem , Quitosana/química , Feminino , Imunização , Imunoglobulina G/imunologia , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Saponinas de Quilaia/administração & dosagem , Saponinas de Quilaia/imunologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
5.
Small ; 2(5): 600-11, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-17193094

RESUMO

This Review describes recent results on the precise spatial distribution control of metal and semiconductor nanoparticles into domains of microphase-separated block copolymers. Specific focus is directed towards selective incorporation into a specific microphase of a block copolymer. Details on theoretical aspects concerning nanoparticle incorporation as well as practical examples are given. Furthermore, examples on applications and technological aspects of the resulting nanoparticle/polymer nanocomposites are provided.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polímeros/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...